
Representation and Reasoning for DAML-Based Policy
and Domain Services in KAoS and Nomads

J. Bradshaw3, A. Uszok3, R. Jeffers3, N. Suri3, P. Hayes3, M. Burstein2, A. Acquisti4,
B. Benyo2, M. Breedy3, M. Carvalho3, D. Diller2, M. Johnson3, S. Kulkarni3,

J. Lott3, M. Sierhuis1, and R. Van Hoof1
1 RIACS and QSS, NASA Ames, MS T35B-1, Moffett Field, CA 94035,

{msierhuis, rvanhoof}@mail.arc.nasa.gov
2 BBN Technologies, 10 Moulton St., Cambridge, MA 02138,

{burstein, bbenyo, ddiller}@bbn.com
3 IHMC/UWF, 40 S. Alcaniz, Pensacola, FL 32501

 {jbradshaw, auszok, rjeffers, nsuri, phayes, mbreedy, mcarvalho, mjohnson, skulkarni,
jlott}@ai.uwf.edu

4 SIMS, UC Berkeley, 102 South Hall, Berkeley, CA 94720,
acquisti@mail.arc.nasa.gov

ABSTRACT
To increase the assurance with which agents can be deployed in
operational settings, we have been developing the KAoS policy
and domain services. In conjunction with Nomads strong mobility
and safe execution features, KAoS services and tools allow for the
specification, management, conflict resolution, and enforcement
of DAML-based policies within the specific contexts established
by complex organizational structures. In this paper, we will
discuss results, issues, and lessons learned in the development of
these representations, tools, and services and their use in military
and space applications

Keywords: social order, conventions, norms, social control;
cultural norms and institutions, ontologies for agents and social
modeling; ontologies in agent-based information systems and
knowledge management, DAML, policy, domains, KAoS,
Nomads, human-agent teamwork, adjustable autonomy, coalition,
augmented cognition, cognitive prosthesis

INTRODUCTION
The increased intelligence afforded by software agents is both a
boon and a danger. By their ability to operate independently
without constant human supervision, they can perform tasks that
would be impractical or impossible using traditional software
applications. On the other hand, this additional autonomy, if
unchecked, also has the potential of effecting severe damage in
the case of buggy or malicious agents. Techniques and tools must
be developed to assure that agents will always operate within the
bounds of established behavioral constraints and will be
continually responsive to human control. Moreover, the policies
that regulate the behavior of agents should be continually adjusted
so as to maximize their effectiveness in both human and
computational environments.
Under DARPA and NASA sponsorship, we have been developing
the KAoS policy and domain services to increase the assurance
with which agents can be deployed in a wide variety of
operational settings. In conjunction with Nomads strong mobility
and safe execution features, KAoS services and tools allow for the

specification, management, conflict resolution, and enforcement
of policies within the specific contexts established by complex
organizational structures. Following a description of these
capabilities (section 2), we will conclude with a brief summary of
current applications (section 3) and a brief outline of future
directions (section 4).

KAoS AND NOMADS POLICY AND
DOMAIN SERVICES
KAoS is a collection of componentized agent services compatible
with several popular agent frameworks, including Nomads [27],
the DARPA CoABS Grid [18], the DARPA ALP/Ultra*Log
Cougaar framework (http://www.cougaar.net), CORBA
(http://www.omg.org), and Voyager (http://www.recursionsw.
com/osi.asp). The adaptability of KAoS is due in large part to its
pluggable infrastructure based on Sun’s Java Agent Services
(JAS) (http://java.agent.org). While initially oriented to the
dynamic and complex requirements of software agent
applications, KAoS services are also being adapted to general-
purpose grid computing (http://www.gridforum.org) and Web
services (http://www.w3.org/2002/ws/) environments as well [17].
For a full description of KAoS, the reader is referred to [5; 6; 7; 8;
9].
Nomads combines the capabilities of Aroma, an enhanced Java-
compatible Virtual Machine (VM), with the Oasis agent execution
environment [26]. It is designed to provide environmental
protection of two kinds:
� assurance of availability of system resources, even in the face

of changing resource priorities, buggy agents or denial-of-
service attacks;

� protection of agent execution state, even in the face of
unanticipated system failure.

These basic capabilities of Nomads provide essential features of
reliability and safety required for interaction with humans in
dynamic and demanding application environments. We are
currently working with Sun Microsystems on incorporating
resource management features similar to Nomads into a future
version of the commercial Java platform.
Following a discussion of the background and motivation for
KAoS and Nomads policy and domain services (section 2.1), we
will provide an overview of the KAoS Policy Ontologies (KPO),
which represent both policies and relevant application and
organizational state declaratively using the DARPA Agent
Markup Language (DAML) (section 2.2). We introduce the KAoS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS ’03, July 14-18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007...$5.00.

835

Policy Administration Tool (KPAT)1, which provides a graphical
user interface to create, structure, and administer domains and
policies without needing to master all the details of DAML
(section 2.3). KAoS and Nomads policy and domain services are
used to define, manage, and enforce constraints assuring coherent,
safe, effective, and natural interaction among collaborating groups
of human and agents. Subsequent sections describe algorithms
and mechanisms for policy conflict resolution (2.4), policy
distribution (2.5), and policy enforcement (2.6), followed by an
example (2.7).

1.1 Background and Motivation
The idea of building strong social laws into intelligent systems
can be traced at least as far back as the 1940s to the science
fiction writings of Isaac Asimov [3]. In his well-known stories of
the succeeding decades he formulated a set of basic laws that were
built deeply into the positronic-brain circuitry of each robot so
that it was physically prevented from transgression. Though the
laws were simple and few, the stories attempted to demonstrate
just how difficult they were to apply in various real-world
situations.2
Shoham and Tennenholtz [24] introduced the theme of social laws
into the agent research community, where investigations have
continued under two main headings: norms and policies. Drawing
on precedents in legal theory, social psychology, social
philosophy, sociology, and decision theory [34], norm-based
approaches have grown in popularity [4; 12; 19; 20]. In the multi-
agent system research community, Conte and Castelfranchi [11]
found that norms were variously described as constraints on
behavior, ends or goals, or obligations. For the most part,
implementations of norms in multi-agent systems share three basic
features:
- they are designed offline; or
- they are learned, adopted, and refined through the purposeful

deliberation of each agent; and
- they are enforced by means of incentives and sanctions.
Interest in policy-based approaches to multi-agent and distributed
systems has also grown considerably in recent years
(http://www.policy-workshop.org). While sharing much in
common with norm-based approaches, policy-based perspectives
differ in subtle ways. Whereas in everyday English the term norm
denotes a practice, procedure, or custom regarded as typical or
widespread, a policy is defined by the American Heritage Online
dictionary as a “course of action, guiding principle, or procedure
considered expedient, prudent, or advantageous.” Thus, in
contrast to the relatively descriptive basis and self-chosen
adoption (or rejection) of norms, policies tend to be seen as
prescriptive and externally imposed entities. Whereas norms in
everyday life emerge gradually from group conventions and
recurrent patterns of interaction, policies are consciously designed
and put into and out of force at arbitrary times by virtue of
explicitly-recognized authority.3 These differences are generally
reflected in the way most policy-based approaches differ from
norm-based ones with respect to the three features mentioned
above. Policy-based approaches:

1 Pronounced “KAY-pat.”
2 In an insightful essay, Roger Clarke explores some of the implications of

Asimov’s stories about the laws of robotics for information
technologists [10]. Weld and Etzioni [35] were the first to discuss the
implications of Asimov’s first law of robotics for agent researchers.
Like most norm-based approaches described below (and unlike most
policy-based approaches) the safety conditions are taken into account as
part of the agents’ own learning and planning processes rather than as
part of the infrastructure. In an important response to Weld and
Etzioni’s “call to arms,” Pynadath and Tambe [23] develop a hybrid
approach that marries the agents’ probabilistic reasoning about
adjustable autonomy with hard safety constraints to generate “policies”
governing the actions of agents. The approach assumes a set of
homogeneous agents who are motivated to cooperate and follow
optimally-generated policies.

3 While it is true that over time norms can be formalized into laws,
policies are explicit and formal by their very nature at the outset.

- support dynamic runtime policy changes, and not merely
static configurations determined in advance;

- work involuntarily with respect to the agents, that is, without
requiring the agents to consent or even be aware of the
policies being enforced; thus aiming to guarantee that even
the simplest agents can comply with policy; and

- wherever possible they are enforced preemptively,
preventing buggy or malicious agents from doing harm in
advance rather than rewarding them or imposing sanctions
on them after the fact.

To increase the likelihood of human acceptability of agent
technology, successful systems must attend to both the technical
and social aspects of policy [22]. From a technical perspective, we
want to be able to help ensure the protection of agent state, the
viability of agent communities, and the reliability of the resources
on which they depend [9]. To accomplish this, we must guarantee,
insofar as is possible, that the autonomy of agents can always be
bounded by explicit enforceable policy that can be continually
adjusted to maximize the agents’ effectiveness and safety in both
human and computational environments. From a social
perspective, we want agents to be designed to fit well with how
people actually work together. Explicit policies governing human-
agent interaction, based on careful observation of work practice
and an understanding of current social science research, can help
assure that effective and natural coordination, appropriate levels
and modalities of feedback, and adequate predictability and
responsiveness to human control are maintained [8; 14]. These
and similar technical and social factors are key to providing the
reassurance and trust that are the prerequisites to the widespread
acceptance of agent technology for non-trivial applications.
Some important features of KAoS are worth noting here before
giving a detailed description. First, the approach does not assume
that the policy-governed system is comprised of a homogeneous
set of components that have been designed in advance to work
with KAoS services. Rather the goal is to be able to have KAoS
services work with arbitrarily written components after the fact
through support being added transparently at the platform level.
Second, insofar as possible the KAoS framework supports
dynamic runtime policy changes, and not merely static
configurations determined in advance. Third, the framework is
extensible to a variety of execution platforms that might be
simultaneously running with different enforcement mechanisms—
in principle any platform for which policy enforcement
mechanisms may be written. Fourth, the KAoS framework is
intended to be robust and adaptable in continuing to manage and
enforce policy in the face of attack or failure of any combination
of components. Finally, KAoS addresses the need for easy-to-use
policy-based administration tools capable of containing domain
knowledge and conceptual abstractions that let application
designers focus their attention more on high-level policy intent
than on implementation details. Such tools require sophisticated
graphical user interfaces for monitoring, visualizing, and
dynamically modifying policies at runtime.
1.2 KAoS Policy Ontologies
In principle, developers could use a variety of representations to
express policies. At one extreme, they might write these policies
in some propositional or constraint representation. At the other
extreme lie a wide variety of simpler schemes, each of which
gives up some types of expressivity. For an assessment of current
description-logic-based representations and tools for policy based
on our experience with KAoS, see [33]; for a comparison between
the KAoS, Rei, and Ponder approaches to policy management, see
[32].
Overview of DAML and KPO. The KAoS Policy Ontologies
(KPO) are currently expressed in DAML (http://www.daml.org).
Designed to support the emerging “Semantic Web,” DAML
extends RDF to allow users to specify ontologies composed of
taxonomies of classes and inference rules. These ontologies can
be used by people for a variety of purposes, such as enabling more
accurate or complex Web searches. Agents can also use semantic
markup languages to understand and manipulate Web content in
significant ways; to discover, communicate, and cooperate with
other agents and services; or, as we outline in this paper, to
interact with policy-based management services and control
mechanisms. OWL, a W3C-approved successor to DAML

836

(http://www.w3.org/2001/sw/WebOnt), is currently being
finalized and will be adopted in KAoS as soon as needed tools are
in place.
The current version of KPO defines basic ontologies for actions,
actors, groups, places, various entities related to actions (e.g.,
computing resources), and policies. There are currently about 80
classes and 40 properties defined in the basic ontologies. It is
expected that for a given application, developers will further
extend KPO. As the application runs, classes and individuals
corresponding to new policies and application entities are also
transparently added and deleted as needed.
Actors, actions, groups, and places. The actor ontology
distinguishes between people and various classes of artificial
agents. Most agents are only permitted to perform ordinary
actions, however various agents that are part of the infrastructure
as well as authorized human users may variously be permitted or
obligated to perform certain policy actions, such as policy
approval and enforcement. Groups of actors or other entities may
be distinguished according to whether the set of members is
defined extensionally (i.e., through explicit enumeration in some
kind of registry) or intensionally (i.e., by virtue of some common
property such as a joint goal that all actors possess or a given
place where various entities may temporarily or permanently be
located).
Policies. The policy ontology distinguishes between
authorizations (i.e., constraints that permit or forbid some action)
and obligations (i.e., constraints that require some action to be
performed, or else serve to waive such a requirement) [13]. A
policy is represented as a DAML instance of the appropriate
policy type with associated values for properties: priority, update
time stamp and a site of enforcement. The most imported
property value is the name of a controlled action class. In most
cases a new action class is built automatically whenever a policy
is defined. Through various property restrictions, a given policy
can be variously scoped, for example, either to individual agents,
to agents of a given class, to agents belonging to a particular
group, or to agents running in a given physical place or
computational environment. Additional aspects of the action
context can be precisely described by restricting values of its
properties.
The policy example below, drawn from the DARPA CoAX
experiment (described in section 3), stipulates that the members of
a domain named Arabello-HQ are forbidden to communicate with
those outside this domain using unencrypted communication:4
<daml:Class rdf:ID="P1Action">

<rdfs:subClassOf rdf:resource="#CommunicationAction" />
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty

rdf:resource="#performedBy" />
<daml:toClass

rdf:resource="#MembersOfDomainArabello-HQ" />
</daml:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty
rdf:resource="#hasDestination" />
<daml:toClass
rdf:resource="#notMembersOfDomain
Arabello-HQ" />

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

<policy:NegAuthorizationPolicy rdf:ID="P1">

<policy:controls rdf:resource="#P1Action" />
<policy:hasSiteOfEnforcement rdf:resource="#ActorSite" />
<policy:hasPriority>1</policy:hasPriority>
<policy:hasUpdateTimeStamp>446744445544</policy:hasU

pdateTimeStamp>
</policy:NegAuthorizationPolicy

4 Of course the DAML policy is not meant to be written or

analyzed directly by an administrator; instead the KPAT user
interface would be used to hide the complexity of the
underlying representations

1.3 Define Policies and Domains with KPAT
KPAT provides a graphical user interface for specifying and
modifying policies and domains.5 In addition, KPAT can be used
to browse and load ontologies and to deconflict newly defined
policies. As policies, domains, and application entities are defined
using KPAT, the appropriate DAML representations are generated
automatically in the background and asserted into or retracted
from the system, insulating the user from having to know DAML
or any other policy language. A generic DAML policy editor may
be used for this purpose (see figure 5 below). Specialized policy
templates can also be defined to allow various classes of policy
definitions to be defined as high-level domain-specific
abstractions. A rich set of queries is also available through KPAT
or through programmatic interfaces.
Groups of agents are structured into agent domains and
subdomains to facilitate policy administration. Domains may
represent any sort of group imaginable, from potentially complex
organizational structures to administrative units to dynamic task-
oriented teams with continually changing membership. A given
domain can extend across host boundaries and, conversely,
multiple domains can exist concurrently on the same host.
Domains may be nested indefinitely and, depending on whether
policy allows, agents may become members of more than one
domain at a time.

Figure 1. KPAT with the domain view showing multiple nested

domains.

1.4 Policy Conflict Resolution
The KAoS Policy Ontologies are used for various forms of online
or offline inference and analysis, including query-based policy
disclosure management, reasoning about future actions based on
knowledge of policies in force, and in assisting users of policy
specification tools to understand the implications of defining new
policies given the current context and the set of policies already in
force.
Changes or additions to policies in force, or a change in status of
an actor (e.g., an agent joining a new domain or moving to a new
host) or some other entity may require logical inference to
determine first of all which policies are in conflict and second
how to resolve these conflicts [21]. We have implemented a
general-purpose algorithm for policy conflict detection and
harmonization whose initial results promise a high degree of
efficiency and scalability.
Figure 2 shows the three types of conflict that can currently be
handled: positive vs. negative authorization (i.e., being
simultaneously permitted and forbidden from performing some
action), positive vs. negative obligation (i.e., being both required
and not required to perform some action), and positive obligation
vs. negative authorization (i.e., being required to perform a
forbidden action). The use of policy deconfliction and
harmonization algorithms that incorporate subsumption-based
reasoning means that policy conflicts can be detected and resolved
even when the actors, actions, or targets of the policies are
specified at very different levels of abstraction. The policy conflict
resolution algorithms rely on a version of Stanford’s Java
Theorem Prover (http://www.ksl.stanford.edu/software/JTP/)

5 Policies can also be defined, analyzed, or modified programmatically by

trusted software components.

837

combined with our own KAoS-specific reasoning and query
extensions.
Steps in policy conflict resolution. KAoS performs several steps in
order to resolve policy conflicts:
2. A DAML policy conflict ontology must be loaded into JTP

along with the set of DAML policies to be deconflicted.
3. A Java list of all policies is constructed and sorted according

to user-defined criteria for policy precedence.6
4. For each policy in the sorted list, iterate through all the

elements with a lower precedence and check to see if there is
a policy conflict. A policy conflict occurs if the two policies
are instances of conflicting types and if the JTP subsumption
mechanism determines that the actions (comprising the
action itself along with the actor and other entities associated
with the action) that the two policies control are not disjoint.

5. The lower precedence policy from the conflicting pair of
policies is removed from the Java list and the policy
harmonization algorithm is invoked. It attempts to modify
the policy with the lower precedence to the minimum degree
necessary to resolve the conflict. If precedence cannot be
determined otherwise, KAoS will ask the administrator to
determine the appropriate action: either removing the policy,
changing precedence, splitting the policy, or continuing with
harmonization [33]. The harmonization algorithm may
generate zero, one or several new policies to replace the
removed policy.

6. The newly constructed harmonized policies inherit the
precedence and the time of last update from the removed
policy, and a pointer to the original policy is maintained so
that it can be recovered if necessary as policies continue to
be added or deleted in the future.

Details of policy harmonization. The derivation of the newly-
generated set of harmonized policies from the original policies
(P1 and P4) can be understood by imagining an intersection of
two N-dimensional Cartesian products:
If

P1 and P4 are two Cartesian products7 defined as:
P1 = D11 x D12 x …. x D1n
P4 = D21 x D22 x …. x D2n

then

6 We currently rely on numeric policy priority assignments by users to

determine precedence. In the future we intend to allow people complete
flexibility in designing the nature and scope of precedence conditions.
For example, it would be possible to define precedence based on the
relative authorities of the individual who defined or imposed the
policies in conflict, which policy was defined first, which has the
largest or smallest scope, whether negative or positive authorization
trumps by default, whether subdomains takes precedence over
superdomains or vice versa, etc.

7 A Cartesian product is the collection of all ordered n-tuples that can be
formed so that they contain one element of the first set, one element of
the second, and so forth until you reach the nth set. This collection can
be seen as constituting an n-dimensional space in which each n-tuple
designates a cell.

P1\P4 = subP1 + subP2 + … + subPn
where

subPk =
(D11∩D21) x ... x (D1(k-1) ∩ D2(k-1)) x (D1k\D2k) x
D1(k+1) x .. x D1n

Figure 3. Graphical representation of policy harmonization.

Figure 3 shows a 3-D graphical representation of policy
harmonization. The illustration, based on the example described
in section 2.7 below, contains only a single action property.
Mapping the mathematical definition above to the generation of
harmonized policies we get the following:
1. The first harmonized policy has a range of actors that

corresponds to the difference between the ranges of the two
original policies and a controlled action and range of values
on the action properties that correspond to those of the
lower-precedence policy.

2. The second harmonized policy has a range of actors that
corresponds to the intersection of the ranges of the two
original policies, a controlled action that corresponds to the
differences between those of the two policies, and a range of
values on the action properties that correspond to that of the
lower-precedence policy.

3. Additional harmonized policies are built to correspond to
each action property in the two original policies. The range
of actors corresponds to the intersection of the ranges of the
two original policies and the controlled action corresponds to
the intersection between those of the two policies.

The results of computing any of the above policies may be empty,
in which case the result can be discarded. Recently, we have
modified KAoS conflict resolution handling to obviate the need
for harmonization in many cases, further increasing performance.

6.1 Policy Distribution
Figure 4 shows the major components of KAoS policy and
domain services framework. During the initialization process, the
core policy ontologies are loaded into the KAoS Directory Service
(DS) using the namespace management capabilities of KPAT.
Additional application-specific or platform-specific ontologies
then can be loaded dynamically from KPAT or programmatically
using the appropriate Java method. As the end-user application
executes, instances relating to application entities are added and
deleted as appropriate. For specific applications and platforms, the
KAoS framework can be further extended and specialized by
creating plug-ins for [33]:
- Policy template and custom action property editors;
- Enforcers controlling, monitoring, or facilitating general or

specific actions;
- Classifiers to determine if a given instance is in the scope of

the given class.

838

The DS implements domain management functionality,
determining, for example, whether agents can join their domain
and analyzing or deconflicting policies as required. The DS is
responsible for notifying Guards about changes in policy or other
aspects of system state that may affect their operation.

Figure 4. KAoS policy and domain services architecture.

Following conflict detection, policies are distributed to guards
based on information about types of agents controlled by them.
Guards activate appropriate enforcers based on received policy
types. While KPAT, the DS, and the Guards are intended to work
identically across different agent platforms (e.g., DARPA CoABS
Grid, Cougaar, CORBA) and execution environments (e.g., Java
VM, Aroma VM), enforcement mechanisms are typically
designed for a specific platform and execution environment. Our
approach enables policy uniformity in domains that might be
simultaneously distributed across multiple platforms and
execution environments, as long as semantically equivalent
monitoring and enforcement mechanisms are available.
Because policy analysis and policy conflict resolution normally
take place prior to the policy being given to the Guard for
enforcement, the operation of the Guards and enforcement
mechanisms can be lightweight and efficient.

6.2 Policy Enforcement
Enforcers are the mechanism by which Guards ensure compliance
with authorization or obligation policies. The grounding of
enforcers to platforms and environments cannot always be made
fully generic. However, they can often be made fully general and
understand abstract ontology action classes via their property
implementedBy (which maps them to concrete environment
operations) and through the use of reflection and security
mechanism of the environment. Other environments require pre-
building enforcers based on the ontology description of the
controlled action class, potentially using a preprocessor. Finally,
some cases required fully custom built enforcers. What can be
made generic however is the interface to the policy disclosure

system answering the question, in the case of authorization
policies, “Is a given action authorized or not?”8
In applications to date, we have relied on several different kinds
of enforcement mechanisms. Enforcement mechanisms built into
the execution environment (e.g., OS or Virtual Machine level
protection) are the most powerful sort, as they can generally be
used to assure policy compliance for any agent or program
running in that environment, regardless of how that agent or
program was written. For example, the Java Authentication and
Authorization Service (JAAS) provides methods that ties access
control to authentication. In KAoS, we have in the past developed
methods based on JAAS that allow policies to be scoped to
individual agent instances rather than just to Java classes.
Currently, JAAS can be used with Java VMs; in the future it
should be possible to use JAAS with the Aroma VM as well. As
described above, the Aroma VM provides, in addition to Java VM
protections, a comprehensive set of resource controls for CPU,
disk and network. The resource control mechanisms allow limits
to be placed on both the rate and the quantity of resources used by
Java threads. Guards running on the Aroma VM can use the
resource control mechanisms to provide enhanced security (e.g.,
prevent or disable denial-of-service attacks), maintain quality of
service for given agents, or give priority to important tasks.
A second kind of enforcement mechanism takes the form of
extensions to particular agent platform capabilities. Agents that
participate in that platform are generally given more permissions
to the degree they are able to make small adaptations in their
agents to comply with policy requirements. For example, in
applications using the DARPA CoABS Grid, we have defined a
KAoSAgentRegistrationHelper to replace the default
GridAgentRegistrationHelper. Grid agent developers
need only replace the class reference in their code to participate in
agent domains and be transparently and reliably governed by
policies currently in force. On the other hand, agents that use the
default GridAgentRegistrationHelper do not participate
in domains and as a result they are typically granted very limited
permissions in their interactions with domain-enabled agents.
Finally, a third type of enforcement mechanism is necessary for
obligation policies. Because obligations cannot be enforced
through preventive mechanisms, enforcers usually only monitor
agent behavior and determine after the fact whether a policy has
been followed. For example, if an agent is required by policy to
report its status to its supervisor every five minutes, an enforcer
might be deployed to watch whether this is in fact happens, and if
not to either try to diagnose and fix the problem, or alternatively
take appropriate sanctions against the agent (e.g., reduce
permissions or publish the observed instance of noncompliance to
an agent reputation service). In addition to enforcers that monitor
the performance of obligations, a second type of enforcer called
an enabler goes beyond simple monitoring to proactively facilitate
or perform the obligation on behalf of the agent. For example, a
monitor might not only watch whether the agent described above
reports every five minutes, but actively facilitate the fulfillment of
its obligation by querying its status every five minutes and making
the report to its supervisor on its behalf.9
Each policy has a property that defines the site of policy
enforcement. For example, access control policies are typically
enforced by a mechanism directly associated with the resource to
be protected (i.e., the target). However in some cases,
administrators may not have control over this resource and instead
may require the policy to be enforced by a mechanism associated
with the actor (i.e., the subject) or some other entity under their
purview.

6.3 Policy Example
To better explain policy conflict resolution we will describe a
simple English-language example of the process and results. The

8 To better support policy exploration we are implementing a variety of

additional policy disclosure mechanisms to help users or framework
components answer various “what if” and “how to” questions, e.g., test
permission, get obligations, learn options, test alternatives, or get
consequences.

9 Enablers can also be used in conjunction with certain kinds of
authorization policies.

839

example is taken from the Coalition Agents Experiment (CoAX)
described below (section 3).
As part of the CoAX scenario, the fictitious country of Arabello
joined the coalition. One interaction involved a coalition agent
tasked to locate a hostile submarine and an Arabello Intel agent
capable of providing sensor reports from an underwater sensor
grid. As new coalition partners, Arabello system administrators
dynamically allowed sensor contact reports to be sent to the
coalition agent, but for security reasons, restricted the range of
messages that could be sent outside of the Arabello domain. The
limitation, described as part of a semantic filtering policy [28; 29]
represented in DAML, limited these outgoing messages to those
whose content was reports about a specific class of submarine,
belonging to the enemy forces, but disallowing reports on other
ships, such as those of Arabello itself.
A global default positive authorization policy for the entire
coalition was previously decided:

P0: Allow coalition actors to perform any action that is
not explicitly prohibited by policy.10

The coalition could have just as easily implemented a negative
authorization policy as a default, prohibiting any action that was
not explicitly authorized by policy.
Arabello headquarters decides on the following restrictive default
policy for the actors in their domain:

P1: Negative Authorization on
MembersOfDomainArabello-HQ to perform
CommunicationAction on hasDestination complementOf
MembersOfDomainArabello-HQ. (i.e., Prohibit outgoing
communication between members of the Arabello
domain and any actor outside the Arabello domain.)

10 Default authorization modalities are currently configured on a per

domain basis. The defaults either correspond to a democracy, where
everything is permitted that is not explicitly forbidden, or a tyranny,
where everything is forbidden that is not explicitly permitted.

However Arabello-Contingent administrators would like to enable
the Arabello Intel agent to be able to send a subset of its reports to
the coalition. It defines the following policy, which is allocated a
higher priority than the previous policy (figure 5):

P4: Positive Authorization on Arabello-Intel to perform
CommunicationAction on hasDestination
MembersOfDomainCoalition-Binni if the semantic filter
allows it (i.e., Allow the Arabello Intel agent to send
outgoing messages about enemy submarines to members
of the Binni-Coalition domain).

When the Arabello administrators commit policies P1 and P4,
KAoS first identifies the policy conflict inherent in the fact that
the two policies are mutually inconsistent (i.e., P1 disallows any
communication outside Arabello while P4 permits selected
communication). Since P4 was defined to be of higher priority, it
remains in force unchanged while P1 becomes the subject for
policy harmonization. The result is three new harmonized
policies, all with the same priority of the original P1:

P1-H1: Negative Authorization on
MembersOfDomainArabello-HQ difference Arabello-Intel
to perform CommunicationAction on hasDestination
(complementOf MembersOfDomainArabello-HQ) (i.e.,
Prohibit outgoing communication for all Arabello
domain members except the Arabello Intel agent to
members of non-Arabello domains).
P1-H3: Negative Authorization on Arabello-Intel to
perform CommunicationAction on hasDestination
(complementOf MembersOfDomainArabello-HQ)
difference MembersOfDomainBinni-Coalition (i.e.,
Prohibit outgoing communication by the Arabello Intel
agent to any actor that is not a member of the Binni-
Coalition domain).
P1-H4: Negative Authorization on Arabello-Intel to
perform CommunicationAction on hasDestination
(complementOf MembersOfDomainArabello-HQ)
intersection MembersOfDomainBinni-Coalition if the
semantic filter does not allow it (i.e., Prohibit outgoing

840

communication by the Arabello Intel agent to any actor
outside the Arabello domain who is a member of the
Binni-Coalition domain if the semantic filter does not
allow it).

The first policy (P1-H1) corresponds to the first type of
harmonized policy described in section 2.4 and shown in Figure
3; the other two policies (P1-H3 and P1-H4) correspond to the
third type of harmonized policy. Since both policies constrained
the identical class of action, no policy of the second type was
generated.
Following harmonization, the user is notified and given an
opportunity to resolve any remaining issues and approve the
results of policy conflict resolution (figure 6). Following user
approval, any obsolete policies are removed and new policies are
sent to the appropriate enforcers. In this case, a communication
enforcer associated with the Arabello Intel agent is requested to
remove P1 and replace it with P1-H3 and P1-H4. Policy P4 is also
sent to this enforcer. The next version of the policy distribution
mechanism will take information about the enforcers default
behavior into account and will not distribute policies in such a
case. Communication enforcers associated with each of the other
agents in the Arabello domain are requested to remove P1 and
replace it with P1-H1.

Figure 6. KPAT notifies the user of the results of policy

harmonization and any issues that have arisen.
Performance. We have tested the performance of KAoS policy
conflict resolution algorithms on a machine with Pentium III 1.2
GHz and 640 MB RAM using JDK 1.3.1. In the limited non-
optimized tests we have made to date, policy commitment,
conflict resolution, and harmonization is consistently performed
in a fraction of a second. For reasons that are not yet fully
understood, however, assertion of each new policy into the JTP
database typically takes an order of magnitude longer than that.
For this reason, we have recently implemented a workaround that
does not require policy instances to be represented in JTP.
Stanford JTP developers are also working on performance
improvements.

APPLICATIONS
Research and development of KAoS and Nomads is taking place
in the context of several applications.
The DARPA CoABS-sponsored Coalition Operations Experiment
(CoAX) (http:// www.aiai.ed.ac.uk /project/ coax/) [2; 28] is a
large international cooperation that models military coalition
operations and implements agent-based systems to mirror
coalition structures, policies, and doctrines. CoAX aims to show
that the agent-based computing paradigm offers a promising new
approach to dealing with issues such as the interoperability of new
and legacy systems, the implicit nature of coalition policies,
security, and recovery from attack, system failure, or service
withdrawal. KAoS provides mechanisms for overall management
of coalition organizational structures represented as domains and
operational constraints represented as policies, while Nomads
provides strong mobility, resource management, and protection
from denial-of-service attacks for untrusted agents that run in its
environment.
Within the DARPA Ultra*Log program (http://www.ultralog.net)
we are collaborating with Network Associates (NAI) to extend
and apply KAoS policy and domain services to assure the
scalability, robustness, and survivability of logistics functionality

in the face of information warfare attacks or severely constrained
or compromised computing and network resources.
As part of the Army Research Lab Advanced Decision
Architectures Consortium, we have been investigating the use of
KAoS and Nomads technologies to enable soldiers in the field to
use agents from handheld devices to perform tasks such as
dynamically tasking sensors and customizing information retrieval
[29; 31]. Suri has developed an agile computing platform [30]
that provides a foundation for this work. We have also
commenced an investigation of requirements for policy-based
information access and analysis within intelligence applications.
An application focused more on the social aspects of agent policy
is within the NASA Cross-Enterprise and Intelligent Systems
Programs, where we are investigating the use of policy-based
models to drive human-robotic teamwork and adjustable
autonomy for highly-interactive autonomous systems such as the
Personal Satellite Assistant (PSA), a softball-sized flying robot
that is being designed to operate onboard spacecraft in pressurized
micro-gravity environments [1; 8]. The same approach is also
being generalized for use in other testbeds, such as unmanned
vehicles and other highly interactive autonomous systems [25].
The Office of Naval Research (ONR) is supporting research to
extend this work on effective human-agent interaction to
unmanned vehicles and other autonomous systems that involve
close, continuous interaction with people. As one part of this
research IHMC and University of South Florida are developing a
new robotic platform with carangiform (fish-like) locomotion,
specialized robotic behaviors for humanitarian demining, human-
agent teamwork, agile computing, and mixed-initiative human
control.
Under funding from DARPA's Augmented Cognition Program,
we are taking the challenge of effective human-agent interaction
one step further as we investigate whether a general policy-based
approach to the development of cognitive prostheses can be
formulated, in which human-agent teaming could be so natural
and transparent that robotic and software agents could appear to
function as direct extensions of human cognitive, kinetic, and
sensory capabilities [15; 16].

FUTURE DIRECTIONS
Future work will include: performance enhancements to reasoning
mechanisms, simplification and streamlining of the KPAT user
interface, and policy implementation constraint resolution to deal
with contention for finite resources.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the sponsorship of this
research by the NASA Cross-Enterprise and Intelligent Systems
Programs, and a joint NASA-DARPA ITAC grant. Additional
support was provided by DARPA’s CoABS, Ultra*Log, and
Augmented Cognition programs, by the Army Research Lab’s
Advanced Decision Architectures program (ARLADA), and the
Office of Naval Research. We are also grateful for the
contributions of Patrick Beautement, Guy Boy, Thomas
Bradshaw, Marshall Brinn, Murray Burke, Bill Clancey, Rob
Cranfill, Paul Feltovich, Richard Fikes, Ken Ford, Mark Greaves,
Jack Hansen, Robert Hoffman, Wayne Jansen, Jessica Jenkins,
Mike Kerstetter, Deborah McGuinness, Sheila McIlraith, Nicola
Muscettola, Anil Raj, Timothy Redmond, Sue Rho, Dylan
Schmorrow, Mike Shafto, Morris Sloman, Austin Tate, Milind
Tambe, and Tim Wright.

REFERENCES
[1] Acquisti, A., Sierhuis, M., Clancey, W. J., & Bradshaw, J. M.
(2002). Agent-based modeling of collaboration and work practices
onboard the International Space Station. Proceedings of the Eleventh
Conference on Computer-Generated Forces and Behavior
Representation. Orlando, FL,
[2] Allsopp, D., Beautement, P., Bradshaw, J. M., Durfee, E., Kirton,
M., Knoblock, C., Suri, N., Tate, A., & Thompson, C. (2002).
Coalition Agents eXperiement (CoAX): Multi-agent cooperation in an
international coalition setting. A. Tate, J. Bradshaw, and M.
Pechoucek (Eds.), Special issue of IEEE Intelligent Systems, 17(3),
26-35.

841

[3] Asimov, I. (1942/1968). Runaround. In I. Asimov (Ed.), I, Robot.
(pp. 33-51). London, England: Grafton Books. Originally published
in Astounding Science Fiction, 1942, pp. 94-103.
[4] Boman, M. (1999). Norms in artificial decision-making. Artificial
Intelligence and Law, 7, 17-35.
[5] Bradshaw, J. M., Beautement, P., Raj, A., Johnson, M., Kulkarni,
S., & Suri, N. (2003). Making agents acceptable to people. In N.
Zhong & J. Liu (Ed.), Intelligent Technologies for Information
Analysis: Advances in Agents, Data Mining, and Statistical Learning.
(pp. in press). Berlin: Springer Verlag.
[6] Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J. D.
(1997). KAoS: Toward an industrial-strength generic agent
architecture. In J. M. Bradshaw (Ed.), Software Agents. (pp. 375-
418). Cambridge, MA: AAAI Press/The MIT Press.
[7] Bradshaw, J. M., Greaves, M., Holmback, H., Jansen, W.,
Karygiannis, T., Silverman, B., Suri, N., & Wong, A. (1999). Agents
for the masses: Is it possible to make development of sophisticated
agents simple enough to be practical? IEEE Intelligent
Systems(March-April), 53-63.
[8] Bradshaw, J. M., Sierhuis, M., Acquisti, A., Feltovich, P.,
Hoffman, R., Jeffers, R., Prescott, D., Suri, N., Uszok, A., & Van
Hoof, R. (2003). Adjustable autonomy and human-agent teamwork in
practice: An interim report on space applications. In H. Hexmoor, R.
Falcone, & C. Castelfranchi (Ed.), Agent Autonomy. (pp. in press).
Kluwer.
[9] Bradshaw, J. M., Suri, N., Breedy, M. R., Canas, A., Davis, R.,
Ford, K. M., Hoffman, R., Jeffers, R., Kulkarni, S., Lott, J.,
Reichherzer, T., & Uszok, A. (2002). Terraforming cyberspace. In D.
C. Marinescu & C. Lee (Ed.), Process Coordination and Ubiquitous
Computing. (pp. 165-185). Boca Raton, FL: CRC Press. Updated and
expanded version of an article that originally appeared in IEEE
Intelligent Systems, July 2001, pp. 49-56.
[10] Clarke, R. (1993-1994). Asimov's laws of robotics: Implications
for information technology, Parts 1 and 2. IEEE Computer,
December/January, 53-61/57-66.
[11] Conte, R., & Castelfranchi, C. (1995). Cognitive and social
action. London, England: UCL Press.
[12] d'Inverno, M., & Luck, M. (2001). Understanding Agent
Systems. Berlin, Germany: Springer-Verlag.
[13] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M. S. (2000).
Ponder: A Language for Specifying Security and Management
Policies for Distributed Systems, Version 2.3. Imperial College of
Science, Technology and Medicine, Department of Computing, 20
October 2000.
[14] Feltovich, P., Bradshaw, J. M., Jeffers, R., & Uszok, A. (2003).
Order and KAoS: Using policy to represent agent cultures.
Proceedings of the AAMAS 03 Workshop on Humans and Multi-
Agent Systems. Melbourne, Australia,
[15] Ford, K. M., Glymour, C., & Hayes, P. (1997). Cognitive
prostheses. AI Magazine, 18(3), 104.
[16] Hoffman, R. R., Ford, K. M., Hayes, P. J., & Bradshaw, J. M.
(2003). The Borg hypothesis. IEEE Intelligent Systems, in press.
[17] Johnson, M., Chang, P., Jeffers, R., Bradshaw, J. M., Soo, V.-
W., Breedy, M. R., Bunch, L., Kulkarni, S., Lott, J., Suri, N., &
Uszok, A. (2003). KAoS semantic policy and domain services: An
application of DAML to Web services-based grid architectures.
Proceedings of the AAMAS 03 Workshop on Web Services and
Agent-Based Engineering. Melbourne, Australia,
[18] Kahn, M., & Cicalese, C. (2001). CoABS Grid Scalability
Experiments. O. F. Rana (Ed.), Second International Workshop on
Infrastructure for Scalable Multi-Agent Systems at the Fifth
International Conference on Autonomous Agents. Montreal, CA,
New York: ACM Press,
[19] Lopez y Lopez, F., Luck, M., & d'Inverno, M. (2001). A
framework for norm-based inter-agent dependence. Proceedings of
the Third Mexican Internation Conference on Computer Science.
[20] Lopez y Lopez, F., Luck, M., & d'Inverno, M. (2002).
Constraining autonomy through norms. Proceedings of the

Conference on Autonomous Agents and Multi-Agent Systems, (pp.
674-681). Bologna, Italy,
[21] Lupu, E. C., & Sloman, M. S. (1999). Conflicts in policy-based
distributed systems management. IEEE Transactions on Software
Engineering—Special Issue on Inconsistency Management.
[22] Norman, D. A. (1997). How might people interact with agents?
In J. M. Bradshaw (Ed.), Software Agents. (pp. 49-55). Cambridge,
MA: The AAAI Press/The MIT Press.
[23] Pynadath, D., & Tambe, M. (2001). Revisiting Asimov's first
law: A response to the call to arms. Proceedings of ATAL 01.
[24] Shoham, Y., & Tennenholtz, M. (1992). On the synthesis of
useful social laws for artificial agent societies. Proceedings of the
Tenth National Conference on Artificial Intelligence, (pp. 276-281).
San Jose, CA,
[25] Sierhuis, M., Bradshaw, J. M., Acquisti, A., Van Hoof, R.,
Jeffers, R., & Uszok, A. (2003). Human-agent teamwork and
adjustable autonomy in practice. Proceedings of the Seventh
International Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS). Nara, Japan,
[26] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill, G.
A., & Jeffers, R. (2000). Strong Mobility and Fine-Grained Resource
Control in NOMADS. Proceedings of the 2nd International
Symposium on Agents Systems and Applications and the 4th
International Symposium on Mobile Agents (ASA/MA 2000). Zurich,
Switzerland, Berlin: Springer-Verlag,
[27] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill, G.
A., Jeffers, R., Mitrovich, T. R., Pouliot, B. R., & Smith, D. S.
(2000). NOMADS: Toward an environment for strong and safe agent
mobility. Proceedings of Autonomous Agents 2000. Barcelona, Spain,
New York: ACM Press,
[28] Suri, N., Bradshaw, J. M., Burstein, M. H., Uszok, A., Benyo,
B., Breedy, M. R., Carvalho, M., Diller, D., Groth, P. T., Jeffers, R.,
Johnson, M., Kulkarni, S., & Lott, J. (2003). DAML-based policy
enforcement for semantic data transformation and filtering in multi-
agent systems. Proceedings of the Autonomous Agents and Multi-
Agent Systems Conference (AAMAS 2003). Melbourne, Australia,
New York, NY: ACM Press,
[29] Suri, N., Bradshaw, J. M., Carvalho, M., Breedy, M. R., Cowin,
T. B., Saavendra, R., & Kulkarni, S. (2003). Applying agile
computing to support efficient and policy-controlled sensor
information feeds in the Army Future Combat Systems environment.
Proceedings of the Annual U.S. Army Collaborative Technology
Alliance (CTA) Symposium.
[30] Suri, N., Bradshaw, J. M., Carvalho, M., Cowin, T. B., Breedy,
M. R., Groth, P. T., & Saavendra, R. (2003). Agile computing:
Bridging the gap between grid computing and ad-hoc peer-to-peer
resource sharing. O. F. Rana (Ed.), Proceedings of the Third
International Workshop on Agent-Based Cluster and Grid
Computing. Tokyo, Japan,
[31] Suri, N., Carvalho, M., Bradshaw, J. M., Breedy, M. R., Cowin,
T. B., Groth, P. T., Saavendra, R., & Uszok, A. (2003). Mobile code
for policy enforcement. Policy 2003. Como, Italy,
[32] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N.,
& Uszok, A. (2003). Semantic Web languages for policy
representation and reasoning: A comparison of KAoS, Rei, and
Ponder. Submitted to the International Semantic Web Conference
(ISWC 03). Sanibel Island, Florida,
[33] Uszok, A., Bradshaw, J. M., Hayes, P., Jeffers, R., Johnson, M.,
Kulkarni, S., Breedy, M. R., Lott, J., & Bunch, L. (2003). DAML
reality check: A case study of KAoS domain and policy services.
Submitted to the International Semantic Web Conference (ISWC 03).
Sanibel Island, Florida,
[34] Verhagen, H. (2001). Norms and artificial agents. Sixth Meeting
of the Special Interest Group on Agent-Based Social Simulation,
ESPRIT Network of Excellence on Agent-Based Computing.
Amsterdam, Holland, http://abss.cfpm.org/amsterdam-
01/abssnorms.pdf.
[35] Weld, D., & Etzioni, O. (1994). The firsts law of robotics: A call
to arms. Proceedings of the National Conference on Artificial
Intelligence (AAAI 94), (pp. 1042-1047).

842

