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ABSTRACT 
To increase the assurance with which agents can be deployed in 
operational settings, we have been developing the KAoS policy 
and domain services. In conjunction with Nomads strong mobility 
and safe execution features, KAoS services and tools allow for the 
specification, management, conflict resolution, and enforcement 
of DAML-based policies within the specific contexts established 
by complex organizational structures. In this paper, we will 
discuss results, issues, and lessons learned in the development of 
these representations, tools, and services and their use in military 
and space applications 

Keywords: social order, conventions, norms, social control; 
cultural norms and institutions, ontologies for agents and social 
modeling; ontologies in agent-based information systems and 
knowledge management, DAML, policy, domains, KAoS, 
Nomads, human-agent teamwork, adjustable autonomy, coalition, 
augmented cognition, cognitive prosthesis 

INTRODUCTION 
The increased intelligence afforded by software agents is both a 
boon and a danger. By their ability to operate independently 
without constant human supervision, they can perform tasks that 
would be impractical or impossible using traditional software 
applications. On the other hand, this additional autonomy, if 
unchecked, also has the potential of effecting severe damage in 
the case of buggy or malicious agents. Techniques and tools must 
be developed to assure that agents will always operate within the 
bounds of established behavioral constraints and will be 
continually responsive to human control. Moreover, the policies 
that regulate the behavior of agents should be continually adjusted 
so as to maximize their effectiveness in both human and 
computational environments. 
Under DARPA and NASA sponsorship, we have been developing 
the KAoS policy and domain services to increase the assurance 
with which agents can be deployed in a wide variety of 
operational settings. In conjunction with Nomads strong mobility 
and safe execution features, KAoS services and tools allow for the 

specification, management, conflict resolution, and enforcement 
of policies within the specific contexts established by complex 
organizational structures. Following a description of these 
capabilities (section 2), we will conclude with a brief summary of 
current applications (section 3) and a brief outline of future 
directions (section 4). 

KAoS AND NOMADS POLICY AND 
DOMAIN SERVICES 
KAoS is a collection of componentized agent services compatible 
with several popular agent frameworks, including Nomads [27], 
the DARPA CoABS Grid [18], the DARPA ALP/Ultra*Log 
Cougaar framework (http://www.cougaar.net), CORBA 
(http://www.omg.org), and Voyager (http://www.recursionsw. 
com/osi.asp). The adaptability of KAoS is due in large part to its 
pluggable infrastructure based on Sun’s Java Agent Services 
(JAS) (http://java.agent.org). While initially oriented to the 
dynamic and complex requirements of software agent 
applications, KAoS services are also being adapted to general-
purpose grid computing (http://www.gridforum.org) and Web 
services (http://www.w3.org/2002/ws/) environments as well [17]. 
For a full description of KAoS, the reader is referred to [5; 6; 7; 8; 
9]. 
Nomads combines the capabilities of Aroma, an enhanced Java-
compatible Virtual Machine (VM), with the Oasis agent execution 
environment [26]. It is designed to provide environmental 
protection of two kinds: 
� assurance of availability of system resources, even in the face 

of changing resource priorities, buggy agents or denial-of-
service attacks; 

� protection of agent execution state, even in the face of 
unanticipated system failure. 

These basic capabilities of Nomads provide essential features of 
reliability and safety required for interaction with humans in 
dynamic and demanding application environments. We are 
currently working with Sun Microsystems on incorporating 
resource management features similar to Nomads into a future 
version of the commercial Java platform. 
Following a discussion of the background and motivation for 
KAoS and Nomads policy and domain services (section 2.1), we 
will provide an overview of the KAoS Policy Ontologies (KPO), 
which represent both policies and relevant application and 
organizational state declaratively using the DARPA Agent 
Markup Language (DAML) (section 2.2). We introduce the KAoS 
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Policy Administration Tool (KPAT)1, which provides a graphical 
user interface to create, structure, and administer domains and 
policies without needing to master all the details of DAML 
(section 2.3). KAoS and Nomads policy and domain services are 
used to define, manage, and enforce constraints assuring coherent, 
safe, effective, and natural interaction among collaborating groups 
of human and agents. Subsequent sections describe algorithms 
and mechanisms for policy conflict resolution (2.4), policy 
distribution (2.5), and policy enforcement (2.6), followed by an 
example (2.7). 

1.1 Background and Motivation 
The idea of building strong social laws into intelligent systems 
can be traced at least as far back as the 1940s to the science 
fiction writings of Isaac Asimov [3]. In his well-known stories of 
the succeeding decades he formulated a set of basic laws that were 
built deeply into the positronic-brain circuitry of each robot so 
that it was physically prevented from transgression. Though the 
laws were simple and few, the stories attempted to demonstrate 
just how difficult they were to apply in various real-world 
situations.2 
Shoham and Tennenholtz [24] introduced the theme of social laws 
into the agent research community, where investigations have 
continued under two main headings: norms and policies. Drawing 
on precedents in legal theory, social psychology, social 
philosophy, sociology, and decision theory [34], norm-based 
approaches have grown in popularity [4; 12; 19; 20]. In the multi-
agent system research community, Conte and Castelfranchi [11] 
found that norms were variously described as constraints on 
behavior, ends or goals, or obligations. For the most part, 
implementations of norms in multi-agent systems share three basic 
features: 
- they are designed offline; or 
- they are learned, adopted, and refined through the purposeful 

deliberation of each agent; and 
- they are enforced by means of incentives and sanctions. 
Interest in policy-based approaches to multi-agent and distributed 
systems has also grown considerably in recent years 
(http://www.policy-workshop.org). While sharing much in 
common with norm-based approaches, policy-based perspectives 
differ in subtle ways. Whereas in everyday English the term norm 
denotes a practice, procedure, or custom regarded as typical or 
widespread, a policy is defined by the American Heritage Online 
dictionary as a “course of action, guiding principle, or procedure 
considered expedient, prudent, or advantageous.” Thus, in 
contrast to the relatively descriptive basis and self-chosen 
adoption (or rejection) of norms, policies tend to be seen as 
prescriptive and externally imposed entities. Whereas norms in 
everyday life emerge gradually from group conventions and 
recurrent patterns of interaction, policies are consciously designed 
and put into and out of force at arbitrary times by virtue of 
explicitly-recognized authority.3 These differences are generally 
reflected in the way most policy-based approaches differ from 
norm-based ones with respect to the three features mentioned 
above. Policy-based approaches: 

                                                                 
1 Pronounced “KAY-pat.” 
2 In an insightful essay, Roger Clarke explores some of the implications of 

Asimov’s stories about the laws of robotics for information 
technologists [10]. Weld and Etzioni [35] were the first to discuss the 
implications of Asimov’s first law of robotics for agent researchers. 
Like most norm-based approaches described below (and unlike most 
policy-based approaches) the safety conditions are taken into account as 
part of the agents’ own learning and planning processes rather than as 
part of the infrastructure. In an important response to Weld and 
Etzioni’s “call to arms,” Pynadath and Tambe [23] develop a hybrid 
approach that marries the agents’ probabilistic reasoning about 
adjustable autonomy with hard safety constraints to generate “policies” 
governing the actions of agents. The approach assumes a set of 
homogeneous agents who are motivated to cooperate and follow 
optimally-generated policies. 

3  While it is true that over time norms can be formalized into laws, 
policies are explicit and formal by their very nature at the outset. 

- support dynamic runtime policy changes, and not merely 
static configurations determined in advance; 

- work involuntarily with respect to the agents, that is, without 
requiring the agents to consent or even be aware of the 
policies being enforced; thus aiming to guarantee that even 
the simplest agents can comply with policy; and 

- wherever possible they are enforced preemptively, 
preventing buggy or malicious agents from doing harm in 
advance rather than rewarding them or imposing sanctions 
on them after the fact. 

To increase the likelihood of human acceptability of agent 
technology, successful systems must attend to both the technical 
and social aspects of policy [22]. From a technical perspective, we 
want to be able to help ensure the protection of agent state, the 
viability of agent communities, and the reliability of the resources 
on which they depend [9]. To accomplish this, we must guarantee, 
insofar as is possible, that the autonomy of agents can always be 
bounded by explicit enforceable policy that can be continually 
adjusted to maximize the agents’ effectiveness and safety in both 
human and computational environments. From a social 
perspective, we want agents to be designed to fit well with how 
people actually work together. Explicit policies governing human-
agent interaction, based on careful observation of work practice 
and an understanding of current social science research, can help 
assure that effective and natural coordination, appropriate levels 
and modalities of feedback, and adequate predictability and 
responsiveness to human control are maintained [8; 14]. These 
and similar technical and social factors are key to providing the 
reassurance and trust that are the prerequisites to the widespread 
acceptance of agent technology for non-trivial applications. 
Some important features of KAoS are worth noting here before 
giving a detailed description. First, the approach does not assume 
that the policy-governed system is comprised of a homogeneous 
set of components that have been designed in advance to work 
with KAoS services. Rather the goal is to be able to have KAoS 
services work with arbitrarily written components after the fact 
through support being added transparently at the platform level. 
Second, insofar as possible the KAoS framework supports 
dynamic runtime policy changes, and not merely static 
configurations determined in advance. Third, the framework is 
extensible to a variety of execution platforms that might be 
simultaneously running with different enforcement mechanisms—
in principle any platform for which policy enforcement 
mechanisms may be written. Fourth, the KAoS framework is 
intended to be robust and adaptable in continuing to manage and 
enforce policy in the face of attack or failure of any combination 
of components. Finally, KAoS addresses the need for easy-to-use 
policy-based administration tools capable of containing domain 
knowledge and conceptual abstractions that let application 
designers focus their attention more on high-level policy intent 
than on implementation details. Such tools require sophisticated 
graphical user interfaces for monitoring, visualizing, and 
dynamically modifying policies at runtime. 
1.2 KAoS Policy Ontologies 
In principle, developers could use a variety of representations to 
express policies. At one extreme, they might write these policies 
in some propositional or constraint representation. At the other 
extreme lie a wide variety of simpler schemes, each of which 
gives up some types of expressivity. For an assessment of current 
description-logic-based representations and tools for policy based 
on our experience with KAoS, see [33]; for a comparison between 
the KAoS, Rei, and Ponder approaches to policy management, see 
[32]. 
Overview of DAML and KPO. The KAoS Policy Ontologies 
(KPO) are currently expressed in DAML (http://www.daml.org). 
Designed to support the emerging “Semantic Web,” DAML 
extends RDF to allow users to specify ontologies composed of 
taxonomies of classes and inference rules. These ontologies can 
be used by people for a variety of purposes, such as enabling more 
accurate or complex Web searches. Agents can also use semantic 
markup languages to understand and manipulate Web content in 
significant ways; to discover, communicate, and cooperate with 
other agents and services; or, as we outline in this paper, to 
interact with policy-based management services and control 
mechanisms. OWL, a W3C-approved successor to DAML 
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(http://www.w3.org/2001/sw/WebOnt), is currently being 
finalized and will be adopted in KAoS as soon as needed tools are 
in place. 
The current version of KPO defines basic ontologies for actions, 
actors, groups, places, various entities related to actions (e.g., 
computing resources), and policies. There are currently about 80 
classes and 40 properties defined in the basic ontologies. It is 
expected that for a given application, developers will further 
extend KPO. As the application runs, classes and individuals 
corresponding to new policies and application entities are also 
transparently added and deleted as needed. 
Actors, actions, groups, and places. The actor ontology 
distinguishes between people and various classes of artificial 
agents. Most agents are only permitted to perform ordinary 
actions, however various agents that are part of the infrastructure 
as well as authorized human users may variously be permitted or 
obligated to perform certain policy actions, such as policy 
approval and enforcement. Groups of actors or other entities may 
be distinguished according to whether the set of members is 
defined extensionally (i.e., through explicit enumeration in some 
kind of registry) or intensionally (i.e., by virtue of some common 
property such as a joint goal that all actors possess or a given 
place where various entities may temporarily or permanently be 
located). 
Policies. The policy ontology distinguishes between 
authorizations (i.e., constraints that permit or forbid some action) 
and obligations (i.e., constraints that require some action to be 
performed, or else serve to waive such a requirement) [13]. A 
policy is represented as a DAML instance of the appropriate 
policy type with associated values for properties: priority, update 
time stamp and a site of enforcement.  The most imported 
property value is the name of a controlled action class. In most 
cases a new action class is built automatically whenever a policy 
is defined. Through various property restrictions, a given policy 
can be variously scoped, for example, either to individual agents, 
to agents of a given class, to agents belonging to a particular 
group, or to agents running in a given physical place or 
computational environment. Additional aspects of the action 
context can be precisely described by restricting values of its 
properties. 
The policy example below, drawn from the DARPA CoAX 
experiment (described in section 3), stipulates that the members of 
a domain named Arabello-HQ are forbidden to communicate with 
those outside this domain using unencrypted communication:4 
<daml:Class rdf:ID="P1Action"> 

<rdfs:subClassOf rdf:resource="#CommunicationAction" />  
<rdfs:subClassOf> 

<daml:Restriction> 
<daml:onProperty 

rdf:resource="#performedBy" />  
<daml:toClass 

rdf:resource="#MembersOfDomainArabello-HQ" />  
</daml:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 

<daml:Restriction> 
<daml:onProperty 
rdf:resource="#hasDestination" /> 
<daml:toClass 
rdf:resource="#notMembersOfDomain
Arabello-HQ" />  

</daml:Restriction> 
</rdfs:subClassOf> 

</daml:Class> 
 
<policy:NegAuthorizationPolicy rdf:ID="P1"> 

<policy:controls rdf:resource="#P1Action" />  
<policy:hasSiteOfEnforcement rdf:resource="#ActorSite" />  
<policy:hasPriority>1</policy:hasPriority>  
<policy:hasUpdateTimeStamp>446744445544</policy:hasU

pdateTimeStamp>  
</policy:NegAuthorizationPolicy 

                                                                 
4 Of course the DAML policy is not meant to be written or 

analyzed directly by an administrator; instead the KPAT user 
interface would be used to hide the complexity of the 
underlying representations 

1.3 Define Policies and Domains with KPAT 
KPAT provides a graphical user interface for specifying and 
modifying policies and domains.5 In addition, KPAT can be used 
to browse and load ontologies and to deconflict newly defined 
policies. As policies, domains, and application entities are defined 
using KPAT, the appropriate DAML representations are generated 
automatically in the background and asserted into or retracted 
from the system, insulating the user from having to know DAML 
or any other policy language. A generic DAML policy editor may 
be used for this purpose (see figure 5 below). Specialized policy 
templates can also be defined to allow various classes of policy 
definitions to be defined as high-level domain-specific 
abstractions. A rich set of queries is also available through KPAT 
or through programmatic interfaces. 
Groups of agents are structured into agent domains and 
subdomains to facilitate policy administration. Domains may 
represent any sort of group imaginable, from potentially complex 
organizational structures to administrative units to dynamic task-
oriented teams with continually changing membership. A given 
domain can extend across host boundaries and, conversely, 
multiple domains can exist concurrently on the same host. 
Domains may be nested indefinitely and, depending on whether 
policy allows, agents may become members of more than one 
domain at a time. 

 
Figure 1. KPAT with the domain view showing multiple nested 

domains. 

1.4 Policy Conflict Resolution 
The KAoS Policy Ontologies are used for various forms of online 
or offline inference and analysis, including query-based policy 
disclosure management, reasoning about future actions based on 
knowledge of policies in force, and in assisting users of policy 
specification tools to understand the implications of defining new 
policies given the current context and the set of policies already in 
force. 
Changes or additions to policies in force, or a change in status of 
an actor (e.g., an agent joining a new domain or moving to a new 
host) or some other entity may require logical inference to 
determine first of all which policies are in conflict and second 
how to resolve these conflicts [21]. We have implemented a 
general-purpose algorithm for policy conflict detection and 
harmonization whose initial results promise a high degree of 
efficiency and scalability. 
Figure 2 shows the three types of conflict that can currently be 
handled: positive vs. negative authorization (i.e., being 
simultaneously permitted and forbidden from performing some 
action), positive vs. negative obligation (i.e., being both required 
and not required to perform some action), and positive obligation 
vs. negative authorization (i.e., being required to perform a 
forbidden action). The use of policy deconfliction and 
harmonization algorithms that incorporate subsumption-based 
reasoning means that policy conflicts can be detected and resolved 
even when the actors, actions, or targets of the policies are 
specified at very different levels of abstraction. The policy conflict 
resolution algorithms rely on a version of Stanford’s Java 
Theorem Prover (http://www.ksl.stanford.edu/software/JTP/) 

                                                                 
5 Policies can also be defined, analyzed, or modified programmatically by 

trusted software components. 
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combined with our own KAoS-specific reasoning and query 
extensions. 
Steps in policy conflict resolution. KAoS performs several steps in 
order to resolve policy conflicts: 
2. A DAML policy conflict ontology must be loaded into JTP 

along with the set of DAML policies to be deconflicted. 
3. A Java list of all policies is constructed and sorted according 

to user-defined criteria for policy precedence.6 
4. For each policy in the sorted list, iterate through all the 

elements with a lower precedence and check to see if there is 
a policy conflict. A policy conflict occurs if the two policies 
are instances of conflicting types and if the JTP subsumption 
mechanism determines that the actions (comprising the 
action itself along with the actor and other entities associated 
with the action) that the two policies control are not disjoint. 

5. The lower precedence policy from the conflicting pair of 
policies is removed from the Java list and the policy 
harmonization algorithm is invoked. It attempts to modify 
the policy with the lower precedence to the minimum degree 
necessary to resolve the conflict. If precedence cannot be 
determined otherwise, KAoS will ask the administrator to 
determine the appropriate action: either removing the policy, 
changing precedence, splitting the policy, or continuing with 
harmonization [33]. The harmonization algorithm may 
generate zero, one or several new policies to replace the 
removed policy. 

6. The newly constructed harmonized policies inherit the 
precedence and the time of last update from the removed 
policy, and a pointer to the original policy is maintained so 
that it can be recovered if necessary as policies continue to 
be added or deleted in the future. 

Details of policy harmonization. The derivation of the newly-
generated set of harmonized policies from the original policies 
(P1 and P4) can be understood by imagining an intersection of 
two N-dimensional Cartesian products: 
If 

P1 and P4 are two Cartesian products7 defined as: 
P1 = D11 x D12 x …. x D1n 
P4 = D21 x D22 x …. x D2n 

then  

                                                                 
6 We currently rely on numeric policy priority assignments by users to 

determine precedence. In the future we intend to allow people complete 
flexibility in designing the nature and scope of precedence conditions. 
For example, it would be possible to define precedence based on the 
relative authorities of the individual who defined or imposed the 
policies in conflict, which policy was defined first, which has the 
largest or smallest scope, whether negative or positive authorization 
trumps by default, whether subdomains takes precedence over 
superdomains or vice versa, etc. 

7 A Cartesian product is the collection of all ordered n-tuples that can be 
formed so that they contain one element of the first set, one element of 
the second, and so forth until you reach the nth set. This collection can 
be seen as constituting an n-dimensional space in which each n-tuple 
designates a cell. 

P1\P4 = subP1 + subP2 + … + subPn 
where 

subPk = 
(D11∩D21) x ... x (D1(k-1) ∩ D2(k-1)) x (D1k\D2k) x 
D1(k+1) x .. x D1n 

 
Figure 3. Graphical representation of policy harmonization. 

Figure 3 shows a 3-D graphical representation of policy 
harmonization. The illustration, based on the example described 
in section 2.7 below, contains only a single action property. 
Mapping the mathematical definition above to the generation of 
harmonized policies we get the following: 
1. The first harmonized policy has a range of actors that 

corresponds to the difference between the ranges of the two 
original policies and a controlled action and range of values 
on the action properties that correspond to those of the 
lower-precedence policy. 

2. The second harmonized policy has a range of actors that 
corresponds to the intersection of the ranges of the two 
original policies, a controlled action that corresponds to the 
differences between those of the two policies, and a range of 
values on the action properties that correspond to that of the 
lower-precedence policy. 

3. Additional harmonized policies are built to correspond to 
each action property in the two original policies. The range 
of actors corresponds to the intersection of the ranges of the 
two original policies and the controlled action corresponds to 
the intersection between those of the two policies. 

The results of computing any of the above policies may be empty, 
in which case the result can be discarded. Recently, we have 
modified KAoS conflict resolution handling to obviate the need 
for harmonization in many cases, further increasing performance.  

6.1 Policy Distribution 
Figure 4 shows the major components of KAoS policy and 
domain services framework. During the initialization process, the 
core policy ontologies are loaded into the KAoS Directory Service 
(DS) using the namespace management capabilities of KPAT. 
Additional application-specific or platform-specific ontologies 
then can be loaded dynamically from KPAT or programmatically 
using the appropriate Java method. As the end-user application 
executes, instances relating to application entities are added and 
deleted as appropriate. For specific applications and platforms, the 
KAoS framework can be further extended and specialized by 
creating plug-ins for [33]: 
- Policy template and custom action property editors; 
- Enforcers controlling, monitoring, or facilitating general or 

specific actions; 
- Classifiers to determine if a given instance is in the scope of 

the given class. 
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The DS implements domain management functionality, 
determining, for example, whether agents can join their domain 
and analyzing or deconflicting policies as required. The DS is 
responsible for notifying Guards about changes in policy or other 
aspects of system state that may affect their operation. 

 
Figure 4. KAoS policy and domain services architecture. 

Following conflict detection, policies are distributed to guards 
based on information about types of agents controlled by them. 
Guards activate appropriate enforcers based on received policy 
types. While KPAT, the DS, and the Guards are intended to work 
identically across different agent platforms (e.g., DARPA CoABS 
Grid, Cougaar, CORBA) and execution environments (e.g., Java 
VM, Aroma VM), enforcement mechanisms are typically 
designed for a specific platform and execution environment. Our 
approach enables policy uniformity in domains that might be 
simultaneously distributed across multiple platforms and 
execution environments, as long as semantically equivalent 
monitoring and enforcement mechanisms are available. 
Because policy analysis and policy conflict resolution normally 
take place prior to the policy being given to the Guard for 
enforcement, the operation of the Guards and enforcement 
mechanisms can be lightweight and efficient. 

6.2 Policy Enforcement 
Enforcers are the mechanism by which Guards ensure compliance 
with authorization or obligation policies. The grounding of 
enforcers to platforms and environments cannot always be made 
fully generic. However, they can often be made fully general and 
understand abstract ontology action classes via their property 
implementedBy (which maps them to concrete environment 
operations) and through the use of reflection and security 
mechanism of the environment. Other environments require pre-
building enforcers based on the ontology description of the 
controlled action class, potentially using a preprocessor. Finally, 
some cases required fully custom built enforcers. What can be 
made generic however is the interface to the policy disclosure 

system answering the question, in the case of authorization 
policies, “Is a given action authorized or not?”8 
In applications to date, we have relied on several different kinds 
of enforcement mechanisms. Enforcement mechanisms built into 
the execution environment (e.g., OS or Virtual Machine level 
protection) are the most powerful sort, as they can generally be 
used to assure policy compliance for any agent or program 
running in that environment, regardless of how that agent or 
program was written. For example, the Java Authentication and 
Authorization Service (JAAS) provides methods that ties access 
control to authentication. In KAoS, we have in the past developed 
methods based on JAAS that allow policies to be scoped to 
individual agent instances rather than just to Java classes. 
Currently, JAAS can be used with Java VMs; in the future it 
should be possible to use JAAS with the Aroma VM as well. As 
described above, the Aroma VM provides, in addition to Java VM 
protections, a comprehensive set of resource controls for CPU, 
disk and network. The resource control mechanisms allow limits 
to be placed on both the rate and the quantity of resources used by 
Java threads. Guards running on the Aroma VM can use the 
resource control mechanisms to provide enhanced security (e.g., 
prevent or disable denial-of-service attacks), maintain quality of 
service for given agents, or give priority to important tasks. 
A second kind of enforcement mechanism takes the form of 
extensions to particular agent platform capabilities. Agents that 
participate in that platform are generally given more permissions 
to the degree they are able to make small adaptations in their 
agents to comply with policy requirements. For example, in 
applications using the DARPA CoABS Grid, we have defined a 
KAoSAgentRegistrationHelper to replace the default 
GridAgentRegistrationHelper. Grid agent developers 
need only replace the class reference in their code to participate in 
agent domains and be transparently and reliably governed by 
policies currently in force. On the other hand, agents that use the 
default GridAgentRegistrationHelper do not participate 
in domains and as a result they are typically granted very limited 
permissions in their interactions with domain-enabled agents. 
Finally, a third type of enforcement mechanism is necessary for 
obligation policies. Because obligations cannot be enforced 
through preventive mechanisms, enforcers usually only monitor 
agent behavior and determine after the fact whether a policy has 
been followed. For example, if an agent is required by policy to 
report its status to its supervisor every five minutes, an enforcer 
might be deployed to watch whether this is in fact happens, and if 
not to either try to diagnose and fix the problem, or alternatively 
take appropriate sanctions against the agent (e.g., reduce 
permissions or publish the observed instance of noncompliance to 
an agent reputation service). In addition to enforcers that monitor 
the performance of obligations, a second type of enforcer called 
an enabler goes beyond simple monitoring to proactively facilitate 
or perform the obligation on behalf of the agent. For example, a 
monitor might not only watch whether the agent described above 
reports every five minutes, but actively facilitate the fulfillment of 
its obligation by querying its status every five minutes and making 
the report to its supervisor on its behalf.9 
Each policy has a property that defines the site of policy 
enforcement. For example, access control policies are typically 
enforced by a mechanism directly associated with the resource to 
be protected (i.e., the target). However in some cases, 
administrators may not have control over this resource and instead 
may require the policy to be enforced by a mechanism associated 
with the actor (i.e., the subject) or some other entity under their 
purview. 

6.3 Policy Example 
To better explain policy conflict resolution we will describe a 
simple English-language example of the process and results. The 
                                                                 
8 To better support policy exploration we are implementing a variety of 

additional policy disclosure mechanisms to help users or framework 
components answer various “what if” and “how to” questions, e.g., test 
permission, get obligations, learn options, test alternatives, or get 
consequences. 

9 Enablers can also be used in conjunction with certain kinds of 
authorization policies. 
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example is taken from the Coalition Agents Experiment (CoAX) 
described below (section 3). 
As part of the CoAX scenario, the fictitious country of Arabello 
joined the coalition. One interaction involved a coalition agent 
tasked to locate a hostile submarine and an Arabello Intel agent 
capable of providing sensor reports from an underwater sensor 
grid. As new coalition partners, Arabello system administrators 
dynamically allowed sensor contact reports to be sent to the 
coalition agent, but for security reasons, restricted the range of 
messages that could be sent outside of the Arabello domain. The 
limitation, described as part of a semantic filtering policy [28; 29] 
represented in DAML, limited these outgoing messages to those 
whose content was reports about a specific class of submarine, 
belonging to the enemy forces, but disallowing reports on other 
ships, such as those of Arabello itself. 
A global default positive authorization policy for the entire 
coalition was previously decided: 

P0: Allow coalition actors to perform any action that is 
not explicitly prohibited by policy.10 

The coalition could have just as easily implemented a negative 
authorization policy as a default, prohibiting any action that was 
not explicitly authorized by policy. 
Arabello headquarters decides on the following restrictive default 
policy for the actors in their domain: 

P1: Negative Authorization on 
MembersOfDomainArabello-HQ to perform 
CommunicationAction on hasDestination complementOf 
MembersOfDomainArabello-HQ. (i.e., Prohibit outgoing 
communication between members of the Arabello 
domain and any actor outside the Arabello domain.) 

                                                                 
10 Default authorization modalities are currently configured on a per 

domain basis. The defaults either correspond to a democracy, where 
everything is permitted that is not explicitly forbidden, or a tyranny, 
where everything is forbidden that is not explicitly permitted. 

However Arabello-Contingent administrators would like to enable 
the Arabello Intel agent to be able to send a subset of its reports to 
the coalition. It defines the following policy, which is allocated a 
higher priority than the previous policy (figure 5): 

P4: Positive Authorization on Arabello-Intel to perform 
CommunicationAction on hasDestination 
MembersOfDomainCoalition-Binni if the semantic filter 
allows it (i.e., Allow the Arabello Intel agent to send 
outgoing messages about enemy submarines to members 
of the Binni-Coalition domain). 

When the Arabello administrators commit policies P1 and P4, 
KAoS first identifies the policy conflict inherent in the fact that 
the two policies are mutually inconsistent (i.e., P1 disallows any 
communication outside Arabello while P4 permits selected 
communication). Since P4 was defined to be of higher priority, it 
remains in force unchanged while P1 becomes the subject for 
policy harmonization. The result is three new harmonized 
policies, all with the same priority of the original P1: 

P1-H1: Negative Authorization on 
MembersOfDomainArabello-HQ difference Arabello-Intel 
to perform CommunicationAction on hasDestination 
(complementOf MembersOfDomainArabello-HQ) (i.e., 
Prohibit outgoing communication for all Arabello 
domain members except the Arabello Intel agent to 
members of non-Arabello domains). 
P1-H3: Negative Authorization on Arabello-Intel to 
perform CommunicationAction on hasDestination 
(complementOf MembersOfDomainArabello-HQ) 
difference MembersOfDomainBinni-Coalition (i.e., 
Prohibit outgoing communication by the Arabello Intel 
agent to any actor that is not a member of the Binni-
Coalition domain). 
P1-H4: Negative Authorization on Arabello-Intel to 
perform CommunicationAction on hasDestination 
(complementOf MembersOfDomainArabello-HQ) 
intersection MembersOfDomainBinni-Coalition if the 
semantic filter does not allow it (i.e., Prohibit outgoing 
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communication by the Arabello Intel agent to any actor 
outside the Arabello domain who is a member of the 
Binni-Coalition domain if the semantic filter does not 
allow it). 

The first policy (P1-H1) corresponds to the first type of 
harmonized policy described in section 2.4 and shown in Figure 
3; the other two policies (P1-H3 and P1-H4) correspond to the 
third type of harmonized policy. Since both policies constrained 
the identical class of action, no policy of the second type was 
generated. 
Following harmonization, the user is notified and given an 
opportunity to resolve any remaining issues and approve the 
results of policy conflict resolution (figure 6). Following user 
approval, any obsolete policies are removed and new policies are 
sent to the appropriate enforcers. In this case, a communication 
enforcer associated with the Arabello Intel agent is requested to 
remove P1 and replace it with P1-H3 and P1-H4. Policy P4 is also 
sent to this enforcer. The next version of the policy distribution 
mechanism will take information about the enforcers default 
behavior into account and will not distribute policies in such a 
case. Communication enforcers associated with each of the other 
agents in the Arabello domain are requested to remove P1 and 
replace it with P1-H1. 

 
Figure 6. KPAT notifies the user of the results of policy 

harmonization and any issues that have arisen. 
Performance. We have tested the performance of KAoS policy 
conflict resolution algorithms on a machine with Pentium III 1.2 
GHz and 640 MB RAM using JDK 1.3.1. In the limited non-
optimized tests we have made to date, policy commitment, 
conflict resolution, and harmonization is consistently performed 
in a fraction of a second. For reasons that are not yet fully 
understood, however, assertion of each new policy into the JTP 
database typically takes an order of magnitude longer than that. 
For this reason, we have recently implemented a workaround that 
does not require policy instances to be represented in JTP. 
Stanford JTP developers are also working on performance 
improvements. 

APPLICATIONS 
Research and development of KAoS and Nomads is taking place 
in the context of several applications. 
The DARPA CoABS-sponsored Coalition Operations Experiment 
(CoAX) (http:// www.aiai.ed.ac.uk /project/ coax/) [2; 28] is a 
large international cooperation that models military coalition 
operations and implements agent-based systems to mirror 
coalition structures, policies, and doctrines. CoAX aims to show 
that the agent-based computing paradigm offers a promising new 
approach to dealing with issues such as the interoperability of new 
and legacy systems, the implicit nature of coalition policies, 
security, and recovery from attack, system failure, or service 
withdrawal. KAoS provides mechanisms for overall management 
of coalition organizational structures represented as domains and 
operational constraints represented as policies, while Nomads 
provides strong mobility, resource management, and protection 
from denial-of-service attacks for untrusted agents that run in its 
environment. 
Within the DARPA Ultra*Log program (http://www.ultralog.net) 
we are collaborating with Network Associates (NAI) to extend 
and apply KAoS policy and domain services to assure the 
scalability, robustness, and survivability of logistics functionality 

in the face of information warfare attacks or severely constrained 
or compromised computing and network resources. 
As part of the Army Research Lab Advanced Decision 
Architectures Consortium, we have been investigating the use of 
KAoS and Nomads technologies to enable soldiers in the field to 
use agents from handheld devices to perform tasks such as 
dynamically tasking sensors and customizing information retrieval 
[29; 31]. Suri has developed an agile computing platform [30] 
that provides a foundation for this work. We have also 
commenced an investigation of requirements for policy-based 
information access and analysis within intelligence applications. 
An application focused more on the social aspects of agent policy 
is within the NASA Cross-Enterprise and Intelligent Systems 
Programs, where we are investigating the use of policy-based 
models to drive human-robotic teamwork and adjustable 
autonomy for highly-interactive autonomous systems such as the 
Personal Satellite Assistant (PSA), a softball-sized flying robot 
that is being designed to operate onboard spacecraft in pressurized 
micro-gravity environments [1; 8]. The same approach is also 
being generalized for use in other testbeds, such as unmanned 
vehicles and other highly interactive autonomous systems [25]. 
The Office of Naval Research (ONR) is supporting research to 
extend this work on effective human-agent interaction to 
unmanned vehicles and other autonomous systems that involve 
close, continuous interaction with people. As one part of this 
research IHMC and University of South Florida are developing a 
new robotic platform with carangiform (fish-like) locomotion, 
specialized robotic behaviors for humanitarian demining, human-
agent teamwork, agile computing, and mixed-initiative human 
control. 
Under funding from DARPA's Augmented Cognition Program, 
we are taking the challenge of effective human-agent interaction 
one step further as we investigate whether a general policy-based 
approach to the development of cognitive prostheses can be 
formulated, in which human-agent teaming could be so natural 
and transparent that robotic and software agents could appear to 
function as direct extensions of human cognitive, kinetic, and 
sensory capabilities [15; 16]. 

FUTURE DIRECTIONS 
Future work will include: performance enhancements to reasoning 
mechanisms, simplification and streamlining of the KPAT user 
interface, and policy implementation constraint resolution to deal 
with contention for finite resources. 
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